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ABSTRACT

The quality of images produced by iterative image
reconstruction methods is directly affected by the accuracy
of the system model being used. Although the system
response of an imaging system can be computed or
measured with high accuracy, practical constraints on
computation cost often force the adoption of various
approximations to the system model to obtain a
computationally  efficient  system  matrix. = These
approximations inevitably cause artifacts in reconstructed
image. In this work we propose a residual correction
method for iterative reconstruction to reduce reconstruction
artifact caused by the model inaccuracies.  Unlike
conventional iterative methods which assume that the system
matrix is accurate, the proposed method reconstructs an
initial image with an approximate system model and then
corrects for the reconstruction artifacts by introducing a data
correction term to compensate for the model inaccuracies.
Computer simulation showed that the proposed method can
significantly improve image quality in terms of objective
function value compared to approximate algorithms, while it
is computationally more efficient than the conventional
method that uses the accurate system model at every
iteration.

Index Terms— lterative reconstruction, system matrix,
error propagation, artifact correction.

1. INTRODUCTION

Iterative reconstruction methods have been developed for
many medical imaging modalities because they can
incorporate sophisticated and accurate system models.
Several groups have demonstrated that an accurate system
matrix can improve image quality in both SPECT and PET.
Although Monte Carlo simulation or physical measurements
can be used to obtain a fairly accurate system model [1], the
resulting models are often non-sparse and using them in a
conventional iterative reconstruction framework for
emission tomography is computationally challenging,
because of the high computational cost associated with the
forward and back projections with a non-sparse system
matrix required at every iterations. One method to reduce
computational cost is to use a simplified unmatched back
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projector [2], but an accurate system model for forward
projection is still required at every iteration.

For efficient computation, most iterative reconstruction
methods employ approximations to obtain a sparse system
matrix or a system matrix with a certain structure (e.g. block
circulant). For example, most system models of PET ignore
the effects of positron range, acollinearity of photon pairs,
variation of sensitivity along the line of response (LOR)
caused by the solid angle effect, and the spatially variant
response of the detector caused by the inter-crystal
penetration and scatter. Approximations in system models
are also necessary when graphical processing unit (GPU) or
Fourier projectors are used to accelerate reconstruction [3,
4].

Using approximate system model inevitably affects
image quality. The inaccuracy in system model is one of the
major factors that limit the resolution in high-count PET
studies. =~ With the advent of new generation of high
resolution detectors, there is increasing demands for
reducing artifacts caused by errors in system matrix.

Based on our previous work on error propagation from
system matrix in the maximum a posteriori (MAP)
reconstruction [5], here we propose a residual correction
approach that is capable of reducing reconstruction artifacts
caused by errors in the system model. Unlike convention
iterative methods, the proposed method does not require an
accurate system model at every iteration. The only
knowledge needed for error correction is a forward
projection of the image with the accurate system model, and
no backprojection is required. In this way, we are able to
improve image resolution by using the accurate system
model yet retain the speed of approximate system model.

2. THEORY

2.1. MAP Image reconstruction
Emission data y € R” are related to the unknown tracer

distribution x e R through an affine transform
y=Px+r+n,

where P e R"" is the system matrix; r € R™* accounts

for the presence of scattered and random events in the data,

and n e R”* is zero-mean random noise.
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Estimation X is found by maximizing the log-posterior
density function ¥(y,x)

x = argmax ‘P (y, x),

x20

Y(y.x)=[Ly|x)-pUX], (1)

where L(y|x) is the log-likelihood function, U(x) is a
roughness penalty function, and £ is the regularization

parameter that controls the tradeoff between resolution and
noise.

For Gaussian noise, we have L(y|x)= —%”y—&”i ,
where w is the inverse of the covariance matrix of y and
Poisson

y=Px+r. For independent

haveL(y | X) = Z(yi log)‘}i _JA},' _logy[ D

noise, we

2.2. Error propagation from the system matrix

Iterative algorithms are often used to find the MAP solution
in (1) because a closed-form solution does not usually exist.
Even when the closed-form solution is available, such as in
the case of Gaussian noise, the solution is often impractical
to compute for real imaging systems because of the high
dimension. While iterative methods are amenable to
arbitrarily complicated system models, approximations are
intentionally introduced to the system matrix P to allow fast
forward and back projection operations. Consider error AP
in a system model, i.e.,

P_. =P—-AP,

where P

'« 1s the “accurate” system matrix, such as one
calculated by a validated Monte Carlo simulation program,
and P is the approximate system matrix, such as an ideal
line integral system model used in many reconstruction
programs. The corresponding error propagation from AP to
the estimated image is
Ak =% -%,

where %* and X are the images reconstructed using the true
and approximate system matrices, respectively.

In [5] we analyzed the effect of errors in the system
matrix on MAP reconstruction using Kuhn-Tucker condition
and the first order Taylor series approximations. For any
log-likelihood term that can be written as

L(y;x) = ®(y,¥),
the error propagation formula is

AR~ [-PTVRO(y, )P+ VUK |
x[(AP)' V"' (y,§) + PV D(y,§)AP)R |,

where """ denotes matrix transpose, the (i, j)th element of

V2d(y,y) is 55’;% @(y,¥), the jth element of V" ®(y,¥)
is = ®(y,y), and V’U(%) is a symmetric matrix with the

;
2

(i,m)th element being ==—U(X) .

0X;0%,,
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For Gaussian likelihood function, the expression can be
simplified to

AR=-[P'WP+ VUG | [P waPR]  (2a)

For Poisson likelihood function, the expression can be
simplified to

-1
AR z—[PTDH}m ,BVZU(f;)} {PTD{%}(AP)Q}, (2b)
y y
where D{%} is a diagonal matrix whose ith diagonal
y

element equals to y, / 7.

2.3. Correction with pre-compensation of data
We found that equation (2a) and (2b) can also be expressed
as

AR~V X(y)(AP)R, (3)
where X(y) is the reconstruction function implicitly defined
by (1), and V X(y) is the gradient of X with respectto y.

Using (3) we can obtain an error-corrected image by
X" =X+ V X(y)(AP)X

~ argmax P (y + (AP)X, x) @)
x>0

where W (y,x) is the log posterior density function defined

in (1). Equation (4) indicates that a corrected image can be
reconstructed using the approximate system matrix after
precompensating the data for the error propagation. The
correction term is computed by comparing the forward
projection of the initial reconstruction X using the
approximate model and the accurate model.

The advantage of correction using (4) is that no separate
optimization algorithm is needed. Instead, the original
reconstruction program using the approximate matrix can be
used for artifact correction. It should be noted that the
knowledge required for computing the data correction term
is only a forward projection using the true system matrix, not
the full system matrix itself. In particular, no backprojection
operation using the accurate system model is required.

2.4. Iterative residual correction
While equation (4) indicates that reconstruction artifacts can
be removed, the correction is only an approximation because
of the first-order Taylor approximation that we used in
deriving (2a) and (2b). The corrected image, X", still
contains residual errors. To further reduce the
reconstruction artifacts, we may consider re-applying
correction to X" and repeating this process iteratively.
The general procedure for iterative residual correction is

x"" = argmax P (y + Ay, x) %)

x>0
where
Ay"™ = (AP)X" (6)



is the data correction term at the nth iteration of correction.

General convergence properties of the proposed iterative
correction scheme is still an open problem. Here we present
some initial results on the convergence condition for
weighted least squares (WLS) reconstruction without
regularization and non-negativity constraint on the image.
In this case, equation (5) simplifies to

Y = argmin {"y +Ay" — PX"jv } .

An implicit iterative formula for X" is defined by the
corresponding normal equation
P"WP)X"" =P w(y + Ay™). (7
Substitute (6) into (7), we have
£ =%+ (P'WP) '[P wy - P'wP, " ]

which is a generalized Landweber iteration. The
corresponding convergence condition is
I-(P'wP) ' (P'WP,,,)|<1
p[1-(P"wP) ' (P'WP,,)] ®

where p[] is the matrix spectrum radius. If (8) is satisfied,
the limit of X is
X =P"wP, ) P’ wy.

In particular, if range(P)=range(P,,) , then X

=X .
which means the proposed iterative correction method will
converge to exactly the same result as the conventional
method that uses the true system matrix. These results are
very similar to that of using unmatched projector and
backprojector pairs [2].

3. COMPUTER SIMULATION

To illustrate the advantage of the proposed method, we
simulated a 2D imaging system having 180 angular views
over 180 degrees and 128 radial samples per view. The
image is represented by 64 by 64 square pixels. The width of
each line of response is one half of the pixel size.

Fig. 1(a) shows the 2D digital mouse chest phantom [6]
used in this study. The simulated projection data is
computed by first applying a space shift-variant blurring
filter on the object, and then forward projecting the blurred
object using the 2D parallel beam Radon transform. The
blurring filter was intended to simulate the positron range
effect in PET, but it can also be considered as a general
image degrading factor in an imaging system. For simplicity,
here we assumed that the positrons behave diffusively [7],
and the blurring filter was implemented by numerically
solving a space variant diffusion PDE (partial differential
equation). The relative diffusion constant for air, lungs, and
other body tissues were set to 5, 3, and 1, respectively. A
more accurate forward projector based on Monte Carlo
simulation is to be used in the future. Fig. 1(b) and (c) show
noiseless projections of the phantom with and without the
blurring filter, respectively. Fig. 1(d) shows the noisy
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projection data generated by adding computer generated
Poisson noise to the image shown in Fig. 1(c), with an
expected total number of events of 6 million.

(a) (b) (©) (d)

Fig. 1 (a) The digital phantom. (b) Noiseless projection data, no blurring.
(c) Noiseless projection data, with blurring. (d) Noisy projection data, with
blurring.

The proposed method aims to reconstruct the phantom
image with an approximate system matrix, which is a pure
geometric projection matrix without modeling the positron
range effect at all. A penalized log-likelihood objective
function with a quadratic penalty which penalizes the
differences between neighboring pixels (8 nearest neighbors
in 2D) was used in reconstruction. Three iterative
reconstruction methods were compared: (1) the conventional
method that uses the accurate system model in every
iteration; (2) the conventional method that uses the
approximate system model in every iteration; (3) the
proposed method which uses an approximate system model
in the reconstruction and uses the accurate system model for
artifact correction. We investigated applying the correction
every 5, 10, or 20 iterations. A uniform image was used as
the initial for all the methods. A preconditioned conjugate
gradient algorithm with an EM-type preconditioner was used
for calculating the image update in all the methods. Both
noiseless and noisy data were studied.

Fig. 2 plots the objective function values as a function of
iteration number for the noiseless reconstructions. The
proposed method increased the objective function value
significantly compared to the conventional method that uses
only the approximate system model (method 2). In fact, the
proposed method improves the objective function value at a
similar rate as the conventional methods that use the
accurate system model (method 1) at every iteration. Note
that the proposed method is targeted to the situation where a
forward/back projection using an approximate system model
is far more efficient than using the accurate system model.
Because the proposed method does not involve a forward or
back projection with the accurate system model at every
iteration, the computation cost of the proposed method can
be orders of magnitude less than that of the conventional
method (method 1).

The results of the noisy data are shown in Fig. 3.
Compared with the noiseless reconstructions, the objective
function values plateau quickly for all the methods, but the
relative performance remains similar to that in Fig. 2. The
performance of the proposed method is slightly degraded,
because of the noise and also the regularization imposed.
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Fig. 2. Objective function values of the noiseless reconstructions as a
function of iteration number. No regularization is imposed. (1) the
conventional method using the accurate system model; (2) the conventional
method using the approximate system model; (3a) (3b) (3¢): the proposed
method that corrects for the reconstruction artifacts every 5, 10, and 20
iterations, respectively. Note that the computation cost per iteration of each
method is different.
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Fig. 3. Objective function values for the noisy reconstructions as a

function of iteration number. The legends are the same as those in Fig. 2.

(€] @ (3a)

Fig. 4. The images reconstructed from the noiseless data by different
methods. No regularization was imposed. The image labels are the same as
the legends in Fig. 2. All images were obtained with 40 iterations.
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M @ (3a)

Fig. 5. The images reconstructed from a noisy dataset by different methods.
Regularization was imposed to reduce noise. The image labels are the
same as the legends in Fig. 2. All images were obtained with 40 iterations.

Fig. 4 and Fig. 5 compare the images reconstructed by
the three methods. The images reconstructed by the
proposed method are visually similar to those by the
conventional method using the accurate system model.

5. CONCLUSION AND DISCUSSION

We have presented a residual correction method for iterative
reconstruction with an inaccurate system matrix. The
proposed method compensates for the model mismatch by
introducing a correction term to the data to cancel out the
error between the approximate model and accurate model.
The major advantage is that the proposed method does not
require an accurate system model at every iteration.
Computer simulation showed that with a few correction
iterations, the proposed method achieved comparable
objective function value to that achieved by the conventional
method with tens of iterations. Future work includes
studying the possibility of using a hierarchy of approximate
system matrix to further accelerate reconstruction and
applying the algorithm to real data.
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